China OEM Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling spline coupling

Product Description

Flexible flex Fluid Chain Jaw flange Gear Rigid Spacer PIN HRC MH NM universal Fenaflex Oldham spline clamp tyre grid hydraulic servo motor shaft Coupling
 

Product Description

The function of Shaft coupling:
1. Shafts for connecting separately manufactured units such as motors and generators.
2. If any axis is misaligned.
3. Provides mechanical flexibility.
4. Absorb the transmission of impact load.
5. Prevent overload

We can provide the following couplings.
 

Rigid coupling Flange coupling Oldham coupling
Sleeve or muff coupling Gear coupling Bellow coupling
Split muff coupling Flexible coupling Fluid coupling
Clamp or split-muff or compression coupling Universal coupling Variable speed coupling
Bushed pin-type coupling Diaphragm coupling Constant speed coupling

Company Profile

We are an industrial company specializing in the production of couplings. It has 3 branches: steel casting, forging, and heat treatment. Main products: cross shaft universal coupling, drum gear coupling, non-metallic elastic element coupling, rigid coupling, etc.
The company mainly produces the industry standard JB3241-91 swap JB5513-91 swc. JB3242-93 swz series universal coupling with spider type. It can also design and produce various non-standard universal couplings, other couplings, and mechanical products for users according to special requirements. Currently, the products are mainly sold to major steel companies at home and abroad, the metallurgical steel rolling industry, and leading engine manufacturers, with an annual production capacity of more than 7000 sets.
The company’s quality policy is “quality for survival, variety for development.” In August 2000, the national quality system certification authority audited that its quality assurance system met the requirements of GB/T19002-1994 IDT ISO9002:1994 and obtained the quality system certification certificate with the registration number 0900B5711. It is the first enterprise in the coupling production industry in HangZhou City that passed the ISO9002 quality and constitution certification.
The company pursues the business purpose of “reliable quality, the supremacy of reputation, commitment to business and customer satisfaction” and welcomes customers at home and abroad to choose our products.
At the same time, the company has established long-term cooperative relations with many enterprises and warmly welcomes friends from all walks of life to visit, investigate and negotiate business!

 

How to use the coupling safely

The coupling is an intermediate connecting part of each motion mechanism, which directly impacts the regular operation of each motion mechanism. Therefore, attention must be paid to:
1. The coupling is not allowed to have more than the specified axis deflection and radial displacement so as not to affect its transmission performance.
2. The bolts of the LINS coupling shall not be loose or damaged.
3. Gear coupling and cross slide coupling shall be lubricated regularly, and lubricating grease shall be added every 2-3 months to avoid severe wear of gear teeth and serious consequences.
4. The tooth width contact length of gear coupling shall not be less than 70%; Its axial displacement shall not be more significant than 5mm
5. The coupling is not allowed to have cracks. If there are cracks, it needs to be replaced (they can be knocked with a small hammer and judged according to the sound).
6. The keys of LINS coupling shall be closely matched and shall not be loosened.
7. The tooth thickness of the gear coupling is worn. When the lifting mechanism exceeds 15% of the original tooth thickness, the operating mechanism exceeds 25%, and the broken tooth is also scrapped.
8. If the elastic ring of the pin coupling and the sealing ring of the gear coupling is damaged or aged, they should be replaced in time.

 

Certifications

 

Packaging & Shipping

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

spline coupling

How to identify the most suitable mechanical coupling for a specific application?

Choosing the right mechanical coupling for a specific application requires careful consideration of various factors. Here are the steps to help identify the most suitable coupling:

1. Understand Application Requirements:

Begin by thoroughly understanding the requirements of the application. Consider factors such as torque and speed requirements, misalignment allowances, space constraints, environmental conditions, and any specific industry standards.

2. Evaluate Shaft Misalignment:

Determine the type and amount of misalignment expected between the connected shafts. If significant misalignment is anticipated, flexible couplings may be more appropriate.

3. Consider Torque and Power Transmission:

Calculate the torque and power that the coupling will need to transmit between the shafts. Ensure that the selected coupling can handle the expected load without exceeding its rated capacity.

4. Assess Operating Speed:

Take into account the operating speed of the system. High-speed applications may require couplings designed for high rotational speeds to avoid issues like resonance.

5. Evaluate Environmental Factors:

Consider the environmental conditions in which the coupling will operate. For example, corrosive or harsh environments may require couplings made from specific materials like stainless steel.

6. Review Space Limitations:

Examine the available space for installing the coupling. In some cases, compact couplings may be necessary to fit within confined spaces.

7. Analyze Misalignment Compensation:

For applications where precise alignment is challenging, choose couplings that offer misalignment compensation, such as flexible couplings or universal couplings (Hooke’s joints).

8. Consider Vibration Damping:

If the application involves vibrations or shock loads, consider couplings with vibration damping properties, like certain types of flexible couplings.

9. Account for Maintenance Requirements:

Factor in the maintenance needs of the coupling. Some couplings may require periodic inspections and replacement of components, while others are relatively maintenance-free.

10. Seek Expert Advice:

If unsure about the most suitable coupling for the application, consult with coupling manufacturers or engineering experts who can provide guidance based on their expertise and experience.

By systematically evaluating these factors and requirements, engineers and designers can narrow down the options and select the most appropriate mechanical coupling that will ensure reliable and efficient operation in the specific application.

“`spline coupling

Exploring the use of mechanical couplings in high-power and heavy-duty machinery.

Mechanical couplings play a critical role in high-power and heavy-duty machinery, where reliable power transmission and robust performance are essential. These couplings are designed to withstand substantial torque, accommodate misalignment, and provide durability under demanding operating conditions. Here are some key aspects of using mechanical couplings in such machinery:

1. Power Transmission:

In high-power machinery, such as large industrial pumps, compressors, and turbines, mechanical couplings efficiently transfer significant amounts of torque from the driving source (e.g., motor or engine) to the driven equipment. The coupling’s design and material selection are crucial to ensure efficient power transmission and prevent energy losses.

2. Torque Capacity:

Heavy-duty machinery often generates high torque levels during operation. Mechanical couplings used in these applications are designed to handle these high torque requirements without compromising their structural integrity.

3. Misalignment Compensation:

Heavy-duty machinery may experience misalignment due to thermal expansion, foundation settling, or other factors. Mechanical couplings with flexible elements, like elastomeric or grid couplings, can effectively compensate for misalignment, reducing stress on connected equipment and prolonging the machinery’s life.

4. Shock Load Absorption:

High-power machinery may encounter sudden shock loads during starts, stops, or operational changes. Mechanical couplings with damping or shock-absorbing capabilities, such as elastomeric or disc couplings, help protect the equipment from damage and improve overall system reliability.

5. Heavy-Duty Applications:

Heavy-duty machinery, such as mining equipment, construction machinery, and steel rolling mills, require couplings capable of withstanding harsh conditions and heavy loads. Couplings made from robust materials like steel, cast iron, or alloy steel are commonly used in these applications.

6. High-Temperature Environments:

In certain heavy-duty machinery, like industrial furnaces and kilns, mechanical couplings are exposed to high temperatures. Couplings made from high-temperature alloys or materials with excellent heat resistance are selected for such applications.

7. Precision Machinery:

In precision machinery, such as CNC machines and robotics, couplings with low backlash and high torsional stiffness are preferred to ensure accurate and repeatable motion control.

8. Overload Protection:

Some high-power machinery may experience occasional overloads. Couplings with torque-limiting capabilities, like shear pin or magnetic couplings, can act as overload protection, preventing damage to the machinery during such instances.

Mechanical couplings in high-power and heavy-duty machinery are engineered to meet the specific requirements of each application, delivering reliable performance, safety, and efficiency. The proper selection and installation of couplings play a vital role in ensuring the optimal operation of these critical machines.

“`spline coupling

Advantages of using mechanical couplings in power transmission systems.

Mechanical couplings offer several advantages when used in power transmission systems, making them a preferred choice in various industrial applications. Some of the key advantages include:

  • Torque Transmission: Mechanical couplings efficiently transmit torque from one shaft to another, enabling the transfer of power between different components of the system.
  • Misalignment Compensation: Many mechanical couplings can accommodate axial, radial, and angular misalignments between connected shafts, ensuring smooth operation even when precise alignment is challenging to achieve or maintain.
  • Vibration Damping: Some types of mechanical couplings, particularly flexible couplings, dampen vibrations caused by imbalances or load fluctuations. This feature reduces wear on components and improves overall system stability.
  • Shock Absorption: Certain flexible couplings have the ability to absorb shocks and impacts, protecting the connected equipment from sudden force variations and preventing damage.
  • Easy Installation: Mechanical couplings are generally easy to install and replace. Their modular design simplifies maintenance and reduces downtime in case of coupling failure.
  • Load Distribution: Mechanical couplings evenly distribute the load between connected shafts, preventing premature wear and reducing the chances of component failure.
  • Compact Design: Mechanical couplings come in various compact designs, allowing for efficient power transmission without adding significant bulk to the system.
  • Customizability: Manufacturers offer a wide range of mechanical couplings with different sizes, materials, and features to meet specific application requirements, giving engineers the flexibility to choose the most suitable coupling for their systems.
  • Cost-Effectiveness: Mechanical couplings are generally cost-effective compared to more complex power transmission methods, making them a practical choice for many industrial applications.
  • Safety: Some mechanical couplings, like shear-pin or torque-limiting couplings, act as safety features, disconnecting or slipping when the system experiences overload, preventing damage to expensive components.

These advantages make mechanical couplings indispensable in power transmission systems across various industries, including manufacturing, automotive, aerospace, marine, and more. Their ability to efficiently transmit power, accommodate misalignments, and protect the equipment ensures reliable and smooth operation of mechanical systems, contributing to overall system performance and longevity.

“`
China OEM Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling   spline couplingChina OEM Flexible Flex Fluid Chain Jaw Flange Gear Rigid Spacer Pin HRC Mh Nm Universal Fenaflex Oldham Spline Clamp Tyre Grid Hydraulic Servo Motor Shaft Coupling   spline coupling
editor by CX 2024-02-18