China high quality Custome SWC Series Heavy Duty Cardan Shaft/Shaft/Couplings for Industry wholesaler

Product Description

SWCZ Series-Heavy-Duty Designs Cardan shaft

Designs

Data and Size of SWCZ Series Universal Joint Couplings

 

Type Design
Data
Item
SWCZ
  680
SWCZ
 700
SWCZ
  750
SWCZ
  780
SWCZ
 800
SWCZ
 840
SWCZ
 900
SWCZ
  920
SWCZ
 1000
SWCZ
1050
SWCZ
1100
SWCZ
1200
C L 1540 1600 1840 1920 1920 2120 2280 2280 2380 2480 2500 2720
m(kg); 3150 3450 4300 4680 5050 6400 8420 8950 10600 12100 13500 16900
D L 1940 2100 2400 2500 2500 2680 2950 2950 3130 3200 3300 3570
m(kg); 3220 3530 4500 5400 5800 7470 9980 10500 12300 14500 15800 19500
E L 3230 3460 3620 4000 4000 4250 4580 4850 4770 4950 5100 5660
LV 250 250 250 250 250 250 300 300 300 300 300 300
m(kg); 4880 5400 8000 8450 9070 11800 15900 16500 19900 22000 27500 34800
  Tn(N·m); 1640 1750 2250 2500 2670 3100 3800 4050 5200 6500 6900 9000
  Tf(N·m); 980 1050 1350 1500 1600 1860 2280 2430 3120 3900 4140 5400
  β(°); 15 15 15 15 15 15 15 15 15 15 15 15
  D 680 700 750 780 800 840 900 920 1000 1060 1100 1200
  Df 680 700 750 780 800 840 900 920 1000 1060 1100 1200
  D1 635 635 695 725 745 775 935 855 915 920 1015 1100
  D2(H9); 550 570 610 640 660 710 740 760 840 900 920 1000
  D3 560 560 620 660 660 660 750 750 790 800 850 900
  Lm 385 400 480 480 480 530 570 570 595 620 625 680
  k 70 70 95 95 95 110 120 120 130 130 130 130
  n 24 24 24 24 24 24 24 24 24 20 20 20
  d 26 26 31 31 36 38 38 38 50 45 50 58
  Flange bolt M24 M24 M30 M30 M30 M36 M36 M36 M48 M42 M48 M56

1.; Notations:; 
L=Standard length,; or compressed length for designs with length compensation; 
LV=Length compensation; 
M=Weight; 
Tn=Nominal torque(Yield torque 50% over Tn);; 
TF=Fatigue torque,; I.; E.; Permissible torque as determined according to the fatigue strength
Under reversing loads; 
β=Maximum deflection angle; 
MI=weight per 100mm tube
2.; Millimeters are used as measurement units except where noted; 
3.; Please consult us for customizations regarding length,; length compensation and
Flange connections.; 
(DIN or SAT etc.; );
 

The Functions of Splined Shaft Bearings

Splined shafts are the most common types of bearings for machine tools. They are made of a wide variety of materials, including metals and non-metals such as Delrin and nylon. They are often fabricated to reduce deflection. The tooth profile will become deformed with time, as the shaft is used over a long period of time. Splined shafts are available in a huge range of materials and lengths.

Functions

Splined shafts are used in a variety of applications and industries. They are an effective anti-rotational device, as well as a reliable means of transmitting torque. Other types of shafts are available, including key shafts, but splines are the most convenient for transmitting torque. The following article discusses the functions of splines and why they are a superior choice. Listed below are a few examples of applications and industries in which splines are used.
Splined shafts can be of several styles, depending on the application and mechanical system in question. The differences between splined shaft styles include the design of teeth, overall strength, transfer of rotational concentricity, sliding ability, and misalignment tolerance. Listed below are a few examples of splines, as well as some of their benefits. The difference between these styles is not mutually exclusive; instead, each style has a distinct set of pros and cons.
A splined shaft is a cylindrical shaft with teeth or ridges that correspond to a specific angular position. This allows a shaft to transfer torque while maintaining angular correspondence between tracks. A splined shaft is defined as a cylindrical member with several grooves cut into its circumference. These grooves are equally spaced around the shaft and form a series of projecting keys. These features give the shaft a rounded appearance and allow it to fit perfectly into a grooved cylindrical member.
While the most common applications of splines are for shortening or extending shafts, they can also be used to secure mechanical assemblies. An “involute spline” spline has a groove that is wider than its counterparts. The result is that a splined shaft will resist separation during operation. They are an ideal choice for applications where deflection is an issue.
A spline shaft’s radial torsion load distribution is equally distributed, unless a bevel gear is used. The radial torsion load is evenly distributed and will not exert significant load concentration. If the spline couplings are not aligned correctly, the spline connection can fail quickly, causing significant fretting fatigue and wear. A couple of papers discuss this issue in more detail.
splineshaft

Types

There are many different types of splined shafts. Each type features an evenly spaced helix of grooves on its outer surface. These grooves are either parallel or involute. Their shape allows them to be paired with gears and interchange rotary and linear motion. Splines are often cold-rolled or cut. The latter has increased strength compared to cut spines. These types of shafts are commonly used in applications requiring high strength, accuracy, and smoothness.
Another difference between internal and external splined shafts lies in the manufacturing process. The former is made of wood, while the latter is made of steel or a metal alloy. The process of manufacturing splined shafts involves cutting furrows into the surface of the material. Both processes are expensive and require expert skill. The main advantage of splined shafts is their adaptability to a wide range of applications.
In general, splined shafts are used in machinery where the rotation is transferred to an internal splined member. This member can be a gear or some other rotary device. These types of shafts are often packaged together as a hub assembly. Cleaning and lubricating are essential to the life of these components. If you’re using them on a daily basis, you’ll want to make sure to regularly inspect them.
Crowned splines are usually involute. The teeth of these splines form a spiral pattern. They are used for smaller diameter shafts because they add strength. Involute splines are also used on instrument drives and valve shafts. Serration standards are found in the SAE. Both kinds of splines can also contain a ball bearing for high torque. The difference between the 2 types of splines is the number of teeth on the shaft.
Internal splines have many advantages over external ones. For example, an internal spline shaft can be made using a grinding wheel instead of a CNC machine. It also uses a more accurate and economical process. Furthermore, it allows for a shorter manufacturing cycle, which is essential when splining high-speed machines. In addition, it stabilizes the relative phase between the spline and thread.
splineshaft

Manufacturing methods

There are several methods used to fabricate a splined shaft. Key and splined shafts are constructed from 2 separate parts that are shaped in a synchronized manner to transfer torque uniformly. Hot rolling is 1 method, while cold rolling utilizes low temperatures to form metal. Both methods enhance mechanical properties, surface finishes, and precision. The advantage of cold rolling is its cost-effectiveness.
Cold forming is 1 method, as well as machining and assembling. Cold forming is a unique process that allows the spline to be shaped to the desired shape. The resulting shape provides maximum contact area and torsional strength. Standard splines are available in standard sizes, but custom lengths can also be ordered. CZPT offers various auxiliary equipment, such as mating sleeves and flanged bushings.
Cold forging is another method. This method produces long splined shafts that are used in automobile propellers. After the spline portion is cut out, it is worked on in a hobbing machine. Work hardening enhances the root strength of the splined portion. It can be used for bearings, gears, and other mechanical components. Listed below are the manufacturing methods for splined shafts.
Parallel splines are the simplest of the splined shaft manufacturing methods. Parallel splines are usually welded to shafts, while involute splines are made of metal or non-metals. Splines are available in a wide variety of lengths and materials. The process is usually accompanied by a process called milling. The workpiece rotates to produce the serrated surface.
Splines are internal or external grooves in a splined shaft. They work in combination with keyways to transfer torque. Male and female splines are used in gears. Female and male splines correspond to 1 another to ensure proper angular correspondence. Involute splines have more surface area and thus are stronger than external splines. Moreover, they help the shaft fit into a grooved cylindrical member without misalignment.
A variety of other methods of manufacturing a splined shaft can be used to produce a splined shaft. Spline shafts can be produced using broaching and shaping, 2 precision machining methods. Broaching uses a metal tool with successively larger teeth to remove metal and create ridges and holes in the surface of a material. However, this process is expensive and requires special expertise.
splineshaft

Applications

The splined shaft is a mechanical component with a helix-like shape formed by the equal spacing of grooves in a circular ring. The splines can either have parallel or involute sides. The splines minimize stress concentration in stationary joints and can be used in both rotary and linear motion. In some cases, splines are rolled rather than cut. The latter is more durable than cut splines and is often used in applications requiring high strength, accuracy, and smooth finish.
Splined shafts are commonly made of carbon steel. This alloy steel has a low carbon content, making it easy to work with. Carbon steel is a great choice for splines because it is malleable. Generally, high-quality carbon steel provides a consistent motion. Steel alloys are also available that contain nickel, chromium, copper, and other metals. If you’re unsure of the right material for your application, you can consult a spline chart.
Splines are a versatile mechanical component. They are easy to cut and fit. Splines can be internal or external, with teeth positioned at equal intervals on both sides of the shaft. This allows the shaft to engage with the hub around the entire circumference of the hub. It also increases load capacity by creating a constant multiple-tooth point of contact with the hub. For this reason, they’re used extensively in rotary and linear motion.
Splined shafts are used in a wide variety of industries. CZPT Inc. offers custom and standard splined shafts for a variety of applications. When choosing a splined shaft for a specific application, consider the surrounding mated components, torque requirements, and size requirements. These 3 factors will make it the ideal choice for your rotary equipment. And you’ll be pleased with the end result!
There are many types of splines and their applications are endless. They transfer torque and angular misalignment between parts, and they also enable the axial rotation of assembled components. Therefore, splines are an essential component of machinery and are used in a wide range of applications. This type of shaft can be found in various types of machines, from household appliances to industrial machinery. So, the next time you’re looking for a splined shaft, make sure you look for a splined one.

China high quality Custome SWC Series Heavy Duty Cardan Shaft/Shaft/Couplings for Industry     wholesaler China high quality Custome SWC Series Heavy Duty Cardan Shaft/Shaft/Couplings for Industry     wholesaler