China wholesaler Js-Clampling Type Spline Shaft Grid Coupling spline coupling

Product Description

                                    Grid Flexible Coupling Shaft Coupling (JS)
JS grid coupling vibration, JS grid coupling and long service life. JS grid coupling under high load range, JS grid coupling starting safety, high transmission efficiency, reliable operation.
1.The serpentine spring as the elastic element, the elastic strong at the same time, greatly improves the grid coupling torque, widely used in heavy machinery and general machinery.The serpentine spring special technology department, has long service life, allowing higher speed, has good ability to compensate in the axial, radial and angle
2.High transmission efficiency, start safety. Transmission efficiency of up to 99.47%, short-time overload capacity is 2 times the rated torque, operation safety.
3.Simple structure, convenient assembly and disassembly, long service life
4.Damping effect is good to avoid the resonance.

Model Tn KN.m (n) r/min d L L0 L2 D D1 t kg kg  
y x a
JS1 0.045 4500 18-22 47 97 66 95 3 1.91 0.571 0.15 ±0.3 0.076
JS2 0.14 4500 22-35 47 97 68 105 3 2.59 0.041 0.15 ±0.3 0.076
JS3 0.224 4500 25-42 50 103 70 115 3 3.36 0.054 0.15 ±0.3 0.076
JS4 0.4 4500 32-60 60 123 80 130 3 5.45 0.068 0.20 ±0.3 0.10
JS5 0.63 4350 40-56 63 129 92 150 3 7.26 0.086 0.20 ±0.3 0.127
JS6 0.90 4125 48-65 76 155 95 160 3 10.4 0.113 0.20 ±0.3 0.127
JS7 1.80 3600 55-80 89 181 116 190 3 17.7 0.172 0.20 ±0.3 0.15
JS8 3.15 3600 65-95 98 199 122 210 3 25.4 0.254 0.20 ±0.3 0.18
JS9 5.6 2440 75-110 120 245 155 250 5 42.2 0.426 0.25 ±0.5 0.20
JS10 8.0 2250 85-120 127 259 162 270 5 54.5 0.508 0.25 ±0.5 0.23
JS11 12.5 2571 90-140 149 304 192 310 6 81.3 0.735 0.28 ±0.6 0.25
JS12 18 1800 110-170 162 330 195 346 6 121 0.908 0.28 ±0.6 0.30
JS13 25 1650 120-200 184 374 201 384 6 178 1.135 0.28 ±0.6 0.33
JS14 35.5 1500 140-200 183 372 271 450 391 6 234 1.952 0.30 ±0.6 0.40
JS15 50 1350 160-240 198 402 279 500 431 6 317 2.815 0.30 ±0.6 0.45
JS16 63 1225 180-280 216 438 304 566 487 6 448 3.496 0.30 ±0.6 0.5
JS17 90 1100 200-300 239 484 322 630 555 6 620 3.76 0.38 ±0.6 0.56
JS18 125 1050 240-320 260 526 356 675 608 6 776 4.4 0.38 ±0.6 0.6
JS19 160 900 280-360 280 566 355 756 660 6 1058 5.63 0.38 ±1.3 0.68
JS20 224 820 300-380 305 623 432 845 751 13 1426 10.5 0.46 ±1.3 0.74
JS21 315 730 320-420 325 663 490 920 822 13 1787 16.1 0.46 ±1.3 0.8
JS22 400 680 340-450 345 703 546 1000 905 13 2269 24.1 0.48 ±1.3 0.89
JS23 500 630 360-480 368 749 648 1087 13 2951 33.8 0.48 ±1.3 0.96
JS24 630 580 400-460 401 815 698 1180 13 3836 50.2 0.5 ±1.3 1.07
JS25 800 540 420-500 432 877 762 1260 13 4686 67.2 0.5 ±1.3 1.77

Product Pictures

Company Profile

HangZhou CZPT Machinery Manufacturing Co., Ltd. is a high-tech enterprise specializing in the design and manufacture of various types of coupling. There are 86 employees in our company, including 2 senior engineers and no fewer than 20 mechanical design and manufacture, heat treatment, welding, and other professionals.

Advanced and reasonable process, complete detection means. Our company actively introduces foreign advanced technology and equipment, on the basis of the condition, we make full use of the advantage and do more research and innovation. Strict to high quality and operate strictly in accordance with the ISO9000 quality certification system standard mode.

Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. 

Our Services

1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop new models when there are new cars in the market.

5. Quality Control
Every step should be a particular test by Professional Staff according to the standard of ISO9001 and TS16949.


Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing
various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all customers with customized PDF or AI format artwork.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have an excellent price principle, when you make the bulk order the cost of the sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances. 

Q 6: What is the MOQ?
A: Usually our MOQ is 1pcs.

Q 7: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order? 
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A:1) T/T. 

Contact Us

Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China


spline coupling

Comparing mechanical couplings with other types of couplings in performance.

Mechanical couplings are an essential component in power transmission systems, and they are often compared with other types of couplings based on their performance characteristics. Let’s explore how mechanical couplings compare with some other common coupling types:

1. Mechanical Couplings vs. Fluid Couplings:

Fluid couplings use hydraulic fluid to transmit torque between the input and output shafts. They offer smooth torque transmission and can act as a torque limiter, protecting the connected equipment from overloads. However, they have some energy losses due to fluid turbulence, which slightly reduces their efficiency compared to mechanical couplings. Mechanical couplings, on the other hand, provide direct and efficient torque transmission without any energy losses due to fluid friction.

2. Mechanical Couplings vs. Magnetic Couplings:

Magnetic couplings use magnetic fields to transfer torque from one shaft to another. They are commonly used in applications where a hermetic seal is required, such as in pumps and mixers. Magnetic couplings have the advantage of being completely leak-proof, unlike mechanical couplings that may require seals in certain applications. However, magnetic couplings have a lower torque capacity compared to many mechanical couplings, and their efficiency can be affected by variations in magnetic field strength and alignment.

3. Mechanical Couplings vs. Hydraulic Couplings:

Hydraulic couplings use hydraulic fluid to transmit torque. They offer high torque capacity and the ability to slip during overloads, acting as a safety feature. However, hydraulic couplings can have energy losses due to fluid friction, making them slightly less efficient than mechanical couplings. Mechanical couplings do not have energy losses related to fluid friction and provide direct torque transmission, making them more efficient in this regard.

4. Mechanical Couplings vs. Electrical Couplings:

Electrical couplings use electromagnetic fields to transfer torque. They are commonly used in high-precision and high-speed applications, such as robotics and aerospace systems. Electrical couplings can have high torque capacity and precise control over torque transmission. However, they require electrical power to function, which may not be suitable for all applications. Mechanical couplings are self-contained and do not require additional power sources, making them more suitable for various types of machinery and equipment.

5. Mechanical Couplings vs. Friction Couplings:

Friction couplings use friction between contacting surfaces to transmit torque. They are simple in design and can slip during overloads, providing protection against excessive loads. However, friction couplings can experience wear and require periodic maintenance. Mechanical couplings, depending on their type, may have a more robust design and may not experience as much wear under normal operating conditions.

In summary, mechanical couplings offer direct and efficient torque transmission without energy losses related to fluid friction or magnetic fields. While other coupling types may have specific advantages in certain applications, mechanical couplings remain a versatile and widely used choice in various industries due to their reliability, simplicity, and ease of maintenance.

“`spline coupling

How to troubleshoot common issues with mechanical couplings and their solutions?

Mechanical couplings may experience various issues during their operational life. Identifying and troubleshooting these issues promptly is essential to ensure the optimal performance and reliability of the mechanical system. Here are some common coupling problems and their solutions:

1. Misalignment:

Issue: Misalignment between the connected shafts can lead to premature wear, vibration, and reduced efficiency.

Solution: Check and adjust the alignment of the shafts. Properly align the coupling using shims or adjustable couplings to eliminate misalignment. Regularly inspect and correct any misalignment to avoid further issues.

2. Excessive Vibration:

Issue: Excessive vibration can result from misalignment, worn components, or resonance within the system.

Solution: Inspect the coupling for signs of wear, corrosion, or misalignment. Replace worn or damaged components and ensure proper alignment. If resonance is causing vibrations, consider dampening solutions or changing the coupling type to one better suited to the application.

3. Overheating:

Issue: Overheating of the coupling may occur due to excessive friction or inadequate lubrication.

Solution: Check the coupling for proper lubrication and use the recommended lubricant as per the manufacturer’s guidelines. Ensure that the coupling is not overloaded, as excessive torque can lead to overheating. Reduce the load or choose a higher torque-rated coupling if necessary.

4. Backlash:

Issue: Backlash, also known as play or free movement between the coupling components, can affect precision and accuracy in certain applications.

Solution: For applications requiring minimal backlash, choose couplings with low or zero backlash characteristics, such as gear couplings or servo couplings. Regularly inspect and replace worn or damaged components that may contribute to increased backlash.

5. Noise:

Issue: Unusual noises, such as clanking or rattling, may indicate misalignment, worn components, or improper installation.

Solution: Conduct a thorough inspection of the coupling and associated components. Correct any misalignment, replace worn parts, and verify proper installation. Ensure that all fasteners are properly tightened.

6. Premature Wear:

Issue: Premature wear of coupling components can lead to reduced coupling life and system reliability.

Solution: Regularly inspect the coupling for signs of wear and damage. Implement a preventive maintenance program with scheduled inspections and lubrication. Follow the manufacturer’s guidelines for maintenance and installation to maximize the coupling’s lifespan.

By promptly addressing these common issues and implementing appropriate solutions, the mechanical system can operate smoothly, efficiently, and reliably with minimal downtime and maintenance requirements.

“`spline coupling

Can a faulty mechanical coupling lead to equipment failure and downtime?

Yes, a faulty mechanical coupling can indeed lead to equipment failure and downtime in a mechanical system. The importance of well-maintained and properly functioning couplings cannot be overstated, and their failure can have significant consequences:

1. Loss of Torque Transmission:

A faulty coupling may not be able to effectively transmit torque from the motor to the driven load. This loss of torque transmission can result in reduced or erratic performance of the equipment.

2. Increased Wear and Damage:

When a coupling is not functioning correctly, it may introduce excessive play or misalignment between the connected components. This can lead to increased wear on bearings, shafts, gears, and other parts, accelerating their deterioration.

3. Vibrations and Resonance:

Faulty couplings can cause vibrations and resonance in the system, leading to stress and fatigue in the equipment. These vibrations can further propagate throughout the machinery, affecting nearby components and leading to potential failures.

4. Overloading and Overheating:

In some cases, a faulty coupling may not slip or disengage as intended when subjected to overload conditions. This can cause excessive stress on the equipment, leading to overheating and potential damage to the motor, gearbox, or other components.

5. System Downtime:

When a mechanical coupling fails, it often necessitates equipment shutdown for repairs or replacement. This unplanned downtime can lead to production halts, reduced efficiency, and financial losses for businesses.

6. Safety Risks:

A faulty coupling that fails to disconnect or slip during overloads can pose safety risks to personnel and equipment. It may lead to unexpected and potentially dangerous equipment behavior.

7. Costly Repairs and Replacements:

Fixing or replacing damaged components due to coupling failure can be costly. Additionally, if a faulty coupling causes damage to other parts of the system, the repair expenses can escalate.

Regular maintenance and inspections of mechanical couplings are crucial to detect early signs of wear or damage. Identifying and addressing issues promptly can help prevent equipment failure, reduce downtime, and ensure the smooth and efficient operation of mechanical systems.

China wholesaler Js-Clampling Type Spline Shaft Grid Coupling   spline couplingChina wholesaler Js-Clampling Type Spline Shaft Grid Coupling   spline coupling
editor by CX 2023-08-04